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Foreword

Hearing science is a multidisciplinary 
subject that is rooted in a diverse array 
of fields, including physics, engineer-
ing, anatomy, physiology, cell biology, 
and psychology. Bringing together the 
vast reservoir of knowledge from all 
these disciplines into a single text-
book that does justice to the field’s 
complexity without alienating its read-
ers is not a simple task and few have 
done so effectively. Sahley and Musiek 
are among the exceptions. Drawing on 
their many years of combined teach-
ing and research experience/expertise 
in clinical audiology, hearing science, 
and auditory neuropharmacology, as 
well as their combined expertise in gen-
eral medical physiology, neuroanatomy, 
and neurophysiology, they have done 
a masterful job of making this com-
plex body of knowledge approachable 
and straightforward. The book is orga-
nized into 10 chapters, each describ-
ing a different core aspect of hearing 
science. The book’s first two chapters 
are introductory to students new to sci-
ence, providing an overview of what 
science is and summarizing basic con-
cepts, quantities, and measurement 
systems that are used to describe and 
characterize the physical world. These 
chapters set the stage for Chapters 3 
and 4, focusing on the terminology of 
hearing science and the application of 
its basic principles. Chapters 5 and 6 
describe harmonic motion and all the 
properties of sound waves and how 
they are measured, while Chapter 7 
journeys into the domain of acoustics, 
examining the propagation of sound 

waves through space and the com-
plex interactions that shape the sound 
field. This provides a perfect segue into 
Chapter 8, summarizing the principles 
and concepts of psychoacoustics, the 
science of auditory perception. This 
chapter deals with what we hear and 
how the psychophysical attributes of 
sound vary with changes in the physi-
cal parameters of auditory stimulation. 
The last two chapters focus on the biol-
ogy of hearing, beginning with a sum-
mary of terminology used to describe 
the various components and principles 
of nervous system organization (Chap-
ter 9) and ending with a review of the 
anatomy and physiology of the three 
subdivisions of the ear (Chapter 10). 
Each of these chapters is characterized 
by a well-organized text that is pref-
aced by an inspiring quote and a list 
of terms to be defined, and each ends 
with a clear and succinct summary of 
concepts and principles introduced. 
Those chapters with a more quantitative 
bent also include numerous questions 
and/or problems to encourage stu-
dents to put their knowledge to work 
or think beyond the boundaries of the 
book’s pages. The text is written with 
meticulous and thorough attention to 
detail and accuracy. This is especially 
apparent with regard to the formulas 
and tables provided for the compu-
tations of the Bel, decibel, and RMS 
amplitude. An additional feature that 
adds to the attractiveness and flair of 
the book is the frequent reference to 
historic discoveries and to those who 
made them. Concepts presented in the 
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text are beautifully complemented by 
illustrations, graphs, and equations. 
This is a book I wish I had had when 
I was a student, and I believe it will 
become a first choice textbook among 
undergraduate and graduate students. 

It will provide quick answers to ques-
tions, both simple and complex, and 
will provide ever-deepening insights 
into hearing science when knowledge 
of details is the goal.

— �James A. Kaltenbach, PhD 
Director of Otology Research 
The Cleveland Clinic
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Chapter 4

Application of the Basic 
Principles in Hearing Science

In a letter to Robert Hooke dated February 5, 1675, Newton wrote,  
“If I have seen further than others it is by standing upon the shoulders of 

giants” (Gianopoulos, 2006, p. 49; Hawking, 2002, p. 725). Perhaps Newton 
should have said, “I used the shoulders of giants as a springboard.”

Hawking, 2002, p. XIII

Alphabetized Listing of Key Terms Discussed in Chapter 4
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bar

CGS metric system
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displacement

dynamics
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force

friction
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energy
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A Brief Historical 
Account of Motion

The connection between vibratory 
motion and sound was introduced in 
the previous chapter. Historically, the 
study of motion, known also in physics 
as mechanics, has occupied the inter-
ests of scholars that have originated 
from the time of the ancient philoso-
pher Aristotle (384–322 BC), up to and 
beyond the era of the eminent Albert 
Einstein (1879–1955). Today, a thorough 
understanding of motion remains an 
essential component within the study 
of contemporary hearing science. What 
follows is a brief historical account of 
Galileo Galilei (1564–1642) and Isaac 
Newton (1642–1727), both of whom 

made significant contributions that 
advanced the study of motion, and of 
hearing science.

Galileo Galilei (1564–1642)

Recall the image of Galileo (see Por-
trait 1–1) that was presented in Chapter 
1. Galileo was born in Pisa, Italy, and 
became the foremost scientist of the 
early 17th century. He studied medicine 
and the philosophy of Aristotle at the 
University of Pisa from 1581 to 1584. 
At the age of 20, Galileo discovered the 
properties of the pendulum. As indi-
cated in the previous chapter, Galileo 
demonstrated that the rate of harmonic 
motion of a pendulum is inversely 
dependent on its length. This discovery 

net force

newton (of force)

Newton, Isaac

one atmosphere of 
pressure

pascal (Pa)

Pascal, Blaise

pendulum

peripatetics

Pope, Alexander

potential energy

pounds per square 
inch (psi)

power

pressure

Principia

rate

reaction

recoil

reflecting telescope

refracting telescope

restorative force

Rome, Holy Office of

Rules of Reasoning, 
Newton’s

scalar quantity

scalars

second law of motion, 
Newton’s

Slinky

spring-mass system

stretching force 
(tension)

support force

telescope, Newtonian

third law of motion, 
Newton’s

time

vector quantity

vectors

velocity

violent motion

watt

Watt, James

weight

work

Wren, Christopher
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made accurate time-keeping possible. It 
is not known whether Galileo actually 
built a pendulum clock, though Chris-
tiaan Huygens (1629–1695) did build 
one more than ten years after Galileo’s 
death (Giancoli, 2005).

In 1585, Galileo abandoned the study 
of medicine for research in mathematics 
(Hawking, 2002). His approach to sci-
ence included idealization and simpli-
fication, the quantification of theories 
(operationism), the development of the-
ories (induction) with testable hypoth-
eses (deduction), and the completion 
of empirical investigations in order to 
test his predictions (or simply, hypoth-
esis testing). For these reasons, Gali-
leo is often called the “father of mod-
ern experimental science” (Hawking, 
2002). In 1589 at the age of 25, Galileo 
became a professor of mathematics at 
the University of Pisa. From his experi-
ments with falling and rolling objects, 
he developed the concept of accelera-
tion. He demonstrated that for a given 
location on the earth, solid objects with 
different amounts of mass would fall to 
the earth at roughly equivalent speeds 
or with constant acceleration, provided 
the air resistance was equivalent, or 
zero, as in a vacuum. Galileo, however, 
could not explain why. This explanation 
would require the genius of Isaac New-
ton. Galileo additionally determined 
that objects forcibly set into motion by 
a push or a pull on a horizontal sur-
face eventually come to rest due to a 
force, called “friction” and not “nature,” 
as Aristotle had originally asserted. He 
also reasoned that if friction were com-
pletely removed, an object forcibly set 
into motion would continue to move 
indefinitely in a straight line with con-
stant velocity, provided that no other 

force acted to alter its motion. Galileo 
coined the term “inertia,” and inertia 
became central to Galileo’s laws of 
motion. Hence, according to Galileo, 
the constant horizontal motion of an 
object was no less natural than the 
condition of rest. This way of thinking 
was in direct contradiction to the popu-
larly held metaphysical philosophies of 
Aristotle. Hence, Galileo discredited the 
contemporarily held Aristotelian con-
cepts of nature and motion and this led 
to the creation of a new vision of the 
universe (Gianopoulos, 2006). From his 
prudent observations and experimen-
tation, Galileo helped advance a new 
worldview in which the affairs of the 
mind were separate from the affairs of 
matter. In turn, advocates of Aristotelian 
thinking (called Peripatetics) eventually 
forced Galileo to leave the University of 
Pisa. In 1592, Galileo became profes-
sor of mathematics at the University of 
Padua where he made significant dis-
coveries in astronomy (Gianopoulos, 
2006). Galileo built a refracting tele-
scope that was an improvement on a 
design first proposed in 1610 by Hans 
Lipperhey (Hawking, 2002). His conclu-
sions, based on his earlier observation in 
1604 of a supernova, and his telescopic 
observations in 1610 of the moon, Jupi-
ter, and the galaxy, were again in direct 
opposition to the prevailing philosophy 
of an unchanging universe, as put forth 
by Aristotle (Hawking, 2002).

In 1610 Galileo discovered and 
named the four brightest moons of Jupi-
ter, which he called the Medicean stars 
(Hawking, 2002). Later he detected the 
phases of Venus, and the sunspots of 
the Sun. In total, Galileo’s scientific 
conclusions gave credence to a helio-
centric Copernican view of the cosmos 
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(Gianopoulos, 2006). By displacing the 
earth from the center of the universe, he 
was able to conclude that the earth and 
the heavens both operated under simi-
lar laws (Hawking, 2002). He attacked, 
with empirical evidence, the belief that 
mechanics and cosmology were sepa-
rate subject matters. In 1616, officials 
of the Church, together with other Peri-
patetics, warned Galileo to abandon his 
belief in the Copernican view of the 
cosmos. In 1632, the Holy Office of 
Rome (The Inquisition) imprisoned Gal-
ileo for his published writings and con-
fined him for an indefinite time to his 
villa in Florence (Gianopoulos, 2006; 
Hawking, 2002). Galileo remained there 
under house arrest in Tuscany, where 
he later died in 1642 (Giancoli, 2005; 
Hewitt, 2010).

Isaac Newton (1642–1727)

Newton was born in Woolsthorpe, Lin-
colnshire, England, in the same year that 
Galileo died in Florence, while under 
house arrest (Gianopoulos, 2006; Hawk-
ing, 2002) (Portrait 4–1). At the age of 
11, while attending grammar school, 
Newton discovered his particular tal-
ent for building clocks, sundials, and a 
working model of a windmill that was 
powered by a running mouse (Hawking, 
2002). Newton led a rather solitary life 
(Gianopoulos, 2006), and much of New-
ton’s adulthood was filled with episodes 
of harsh, vindictive attacks, not only 
against perceived enemies, but against 
friends and family as well. It has been 
speculated that Newton’s achievements 
were the result of his vindictive obses-
sions and arrogance (Hawking, 2002). 
Beginning at the age of 19, and from 
1661 to 1665, Newton attended Trinity 

College, which was part of Cambridge 
University (Gianopoulos, 2006). While 
at Cambridge, Newton studied the phi-
losophy of Aristotle and Descartes, the 
science of Thomas Hobbs and Robert 
Boyle, the mechanics of Copernicus, the 
astronomy of Galileo, and the optics of 
Kepler (Hawking, 2002). While New-
tonian mechanics has guided astrono-
mers and scientists in their search for 
knowledge for more than 200 years, it 
was Newton’s work with prisms and 
light (1704) (Portrait 4–2) that initially 
brought him fame (Gianopoulos, 2006). 
Newton was the first to use a prism to 
break a ray of light into a spectrum of 
colors. He then used a second prism 
to combine the colors back into white 
light (Stutz, 2006).

Portrait 4–1.  Isaac Newton (1642–1727). “Nature 
and nature’s laws lay hid at night: God said, ‘Let 
Newton be! And all was light.’” Written by Alexander 
Pope to describe Newton’s gift to humanity (Hawking, 
2002, p. 732). Printed with permission. Wikimedia 
Commons, public domain.
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Newton was a rationalist whose em- 
phasis was often based on defining true 
mathematical notions, independent of 
observation (Gianopoulos, 2006). The 
British physicist Robert Hooke, the 
English astronomer Edmond Halley, 
the Dutch mathematician Christiaan 
Huygens, and the architect Christo-
pher Wren were all contemporaries 
of Isaac Newton (Hawking, 2002). At 
the age of 23 (1665) Newton formu-
lated his universal law of gravitation 
and later, from 1666 to 1667, developed 
the binomial theorem. The law of uni-
versal gravitation stated that all mat-
ter is mutually attracted with a force 
directly proportional to the product of 
their (individual) masses, and inversely 
proportional to the square of the dis-
tance between them. He was also able 
to use his inverse square law theory of 

gravity to explain the elliptical motions 
of the planets and the rising and fall-
ing of the tides (Gianopoulos, 2006; 
Hawking, 2002). Newton invented the 
calculus (1666), though the differen-
tial and integral calculus developed by 
Gottfried Wilhelm Leibniz (1646–1716) 
in roughly the same period, is more 
commonly used by mathematicians and 
engineers. Nevertheless, Newton is still 
considered to be the father of infinitesi-
mal calculus, mechanics and planetary 
motion, and theories of light and color. 
He secured his place in history by for-
mulating the law of gravitational force 
and defining his three laws of motion 
(Hawking, 2002).

Newton, like Galileo, adhered to the 
heliocentric-Copernican view of the 
cosmos, and he viewed changes in the 
motion of a mass as originating from 
sources external to the mass, rather than 
representing internal activity within the 
mass (Hawking, 2002). In 1668, Newton 
developed (Stutz, 2006), constructed, 
and later made revisions (1671–1672) to 
the first reflecting telescope (Gianopou-
los, 2006). Newton’s original telescope 
was only 6 inches long and is still on 
display at the library of the Royal Soci-
ety of London. His invention was the 
prototype for the design that later came 
to be called the “Newtonian telescope,” 
a term that is practically synonymous 
with the reflecting telescope (Stutz, 
2006). Newton became a mathematics 
professor at Cambridge in 1669 and 
was appointed the Lucasian Professor 
of Mathematics at Trinity College (in 
Cambridge) which is the same posi-
tion held today by the renowned phys-
icist Stephen Hawking (Gianopoulos, 
2006). Extending the work of Galileo, 
Newton formulated his three laws of 
motion in his great work, the Principia 

Portrait 4–2.  Newton’s mathematical principles 
of natural philosophy. Printed with permission. Wiki-
media Commons, public domain.


